Virtuoso performance to raise comfort and cut costs.

Sustainable well-being hinges to a large extent on a permanently comfortable room temperature. In a growing number of non-residential buildings, this is achieved by utilising the exchange of heat or cold between the ceiling and the room air. Belimo has now developed a unique system to solve this dilemma: in combination with the new CRK24-B1 room temperature controller, the world’s first ever 6-way characterised control valve guarantees finely balanced control of chilled and heated ceilings.

Cost and energy economies
The new K3B2 6-way characterised control valve is specially designed for use in chilled and heated ceilings. The only one of its kind in the world, this incredibly compact valve unites the functionality of up to four straight-through valves. Space, material and installation time are saved and the risk of wiring errors minimised. The new 6-way characterised control valve is equally convincing in operation: the two heating and cooling circuits are hydraulically decoupled thanks to the innovative ball design. They can nevertheless be controlled individually and precisely by means of a rotary movement. And because the valve is always air bubble-tight in the closed position, it also prevents energy losses and helps reduce operating costs.

Immaculate room climate
The new CRK24-B1 room temperature controller interacts optimally with the 6-way characterised control valve. With its integral pre-comfort and energy hold-off functions, it controls the chilled and heated ceiling according to demand. A dew point sensor can also be connected if required. The EHO function monitors the maximum (40°C) and minimum (15°C) room temperature limits, preventing serious damage to the building and the installations.

Manual intervention or quick tests on the connected actuators are possible using the controls on the front. The aesthetic, functional design and simple, intuitive handling round off the harmonious overall picture.
6-way valve with room temperature controller.
System solution for heated and chilled ceilings.

Motorised 6-way characterised control valve range

<table>
<thead>
<tr>
<th>Cooling k_v (m3/h)</th>
<th>Heating k_v (m3/h)</th>
<th>Pipe connection</th>
<th>Modulating actuators</th>
<th>MP actuators</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>Rp ½"</td>
<td>LR24A-SR</td>
<td>LR24A-MP</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4/0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>0.63/0.4/0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1/0.63/0.4/0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>1.3/1/0.63/0.4/0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heating and cooling with the K3B2 6-way characterised control valve

How the CRK24-B1 room temperature controller is used

Heated / chilled ceiling with building protection

Heated / chilled ceiling with building protection, dew point sensor and pre comfort function

Belimo worldwide: www.belimo.com

5-year warranty
On site around the globe
Complete product range
Tested quality
Short delivery times
Comprehensive support

www.Belimo.com
www.Barcolairusa.com
Temperature controller for heated/chilled ceiling systems

Table of contents

Overview of the system 2
Brief description, Accessories 3
Technical data sheet
 Technical data 4
 Safety notes 4
 Product features 5
 Configuration 5
 Electrical installation 5
Operation 6
Functions
 Introduction 7
 Function overview 7
 Setpoint determination 8
 Pre-comfort 9
 Energy hold off (EHO) 9
 Chilled ceiling with dew point monitoring 10
 External setpoint shift 10
 External temperature sensor (a1) 11
 Analogue outputs 11

Dimensions, installation, commissioning, service
 Dimensions [mm] 12
 Mechanical installation 12
 Electrical installation 12
 Design for supply / wire sizing 13
 Commissioning / Power On response 13
 Test and simulation mode 13
 Internal Function test 14
 Simulation control sequence 14
Overview of the system

Single room controller

Heated/chilled ceiling applications

Accessories

CRK24-B1

6-way ball valve and rotary actuators

Diagnostic and setting device

ZTH-GEN

Setting for MP / MFT(2) actuators

PC-Tool

Connection cable ZTH-VAV to CRK24, Diagnostic socket 1/2

ZK1-VAV
Brief description

The room temperature controller CRK24-B1 is precisely designed for the regulation of heated / chilled ceilings. The output sequence of the controller is calibrated to the new 6-way ball valve EXT-K3B2-... with LR24A-MP / LR24A-SR actuator. This controller should therefore only be utilised in the actuator in combination with the 6-way ball valve.

The multitude of override features makes possible an economically and energetically optimised system solution for individualised control of the room climate.

![Device](image)

Standard model CRK24-B1 with user interface (setpoint adjustment, mode switch and status display). For operation, see page 7.

Accessories

<table>
<thead>
<tr>
<th>Mechanical accessories</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRZA-A</td>
<td>Spare cover without user interface</td>
<td></td>
</tr>
<tr>
<td>CRZW</td>
<td>Spare baseplate</td>
<td></td>
</tr>
</tbody>
</table>
Temperature controller for single-room applications with one analogue output:

- The 6-way ball valve for the regulation of a heated/chilled ceiling can be connected with the analogue output ao1.

Technical data

Electrical data
- **Nominal Voltage**: AC 24 V 50/60 Hz
- **Dimensioning**: 3 VA, without actuators
- **Power supply range**: AC 19.2 … 28.8 V
- **Connections**: Terminal block 1 … 3: 2.5 mm²
 - Terminal block 4 … 8: 1.5 mm²

Functional data
- **Control characteristics**
 - P-band heating / cooling: Selectable: 2.0 K / 1.0 K or 4.0 K / 2.0 K
- **External temperature sensor (ai1)**
 - Type NTC, 5 kΩ, Power supply range 10 … 45°C
 - e.g. Belimo Type TFK
- **Setpoint**
 - Energy hold off (EHO): Heating 15°C / Cooling 40°C
 - Pre-comfort: Heating –3 K / Cooling +3 K
- **Dead band**: 1 K
- **Frost protection limit**: 10°C
- **Operation**
 - Mode switch and status display (LED)
 - Rotary knob for setpoint adjustment: ±3 K

Communication connection for field devices: 2 x PP (for PC-Tool, ZTH-GEN, etc.)

Inputs
- 2 x analogue, 2 x digital
- **External temperature sensor (ai1)**
 - Type NTC, 5 kΩ, Power supply range 10 … 45°C
- **External setpoint shift (ai2)**
 - 0 … 10 V correspond to: 0 … 10 K
- **Digital inputs (di1, di2)**
 - Contact rating 10 mA

Output
- 1 x analogue
- **6-way ball valve (ao1)**
 - (0) 2 … 10 V, max. 5 mA

Norms and Standards
- **Protection class**: III Safety extra-low voltage
- **Degree of protection**: IP30 (EN 60529)
- **Mode of operation**: Type 1 (EN60730-1)
- **Software class**: A (EN 60730-1)
- **EMC**: CE according to 2004/108/EU
- **Ambient conditions**
 - Operation: 0 … +50°C / 20 … 90% r.h. (non-condensing)
 - Transport and storage: 25 … +70°C / 20 … 90% r.h. (non-condensing)

Dimensions / Weight
- **Dimensions (H x W x D)**: 99 x 84 x 32 mm
- **Weight**: 105 g

Housing colour
- **Baseplate**: NCS2005-R808 light grey (corresponds approximately to RAL 7035)
- **Cover**: RAL9003 signal white

Safety notes

- **Safety notes**
 - The controller is not allowed to be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.
 - It may only be installed by suitably trained personnel. Any legal regulations or regulations issued by government agency authorities must be observed during assembly.
 - The device does not contain any parts that can be replaced or repaired by the user.
 - The device contains electrical and electronic components and is not allowed to be disposed of as household refuse. All locally valid regulations and requirements must be observed.

www.Belimo.com
www.Barcolairusa.com
Product features

Energy hold off (EHO)
In energy saving mode, the room temperature is regulated to the building protection level, i.e. the heating setpoint is significantly reduced or the cooling setpoint is significantly increased, for instance in a room with an open window.

Pre-comfort
The room temperature is reduced to stand-by level, i.e. the heating setpoint is slightly reduced and/or the cooling setpoint is slightly increased, for instance in a room that is temporarily unoccupied.

Frost
If the current room temperature falls below 10°C, then the frost function will be activated.

Dew point limitation
If the optional connectable dew point limiter responds, then the valve is moved into neutral position.

External temperature sensor
An external temperature sensor can be connected at analogue input ai1.

External setpoint shift
An external DC 0 ... 10 V signal at the analogue input ai2 can be used to shift the basic setpoint by 0 ... 10 K, e.g. for summer/winter compensation.

The functions are described in detail on pages 9 to 13.

Configuration

<table>
<thead>
<tr>
<th>Configuration</th>
<th>ao1 modulating</th>
<th>ao1 On/Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>P-Band normal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P-Band wide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output ao1 modulating</td>
<td>Output ao1 On/Off</td>
</tr>
</tbody>
</table>

Electrical installation

Wiring diagram

Notes
- Connect via safety isolation transformer.
- Parallel connection of other actuators possible.
- Note the performance data.

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>ai1</td>
<td>ao1</td>
</tr>
<tr>
<td>di1</td>
<td>System output for 6-way valve</td>
</tr>
<tr>
<td>di2</td>
<td>Other connections</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>PP1</td>
</tr>
<tr>
<td>ai2</td>
<td>Diagnostic socket 1</td>
</tr>
</tbody>
</table>
Mode switch and status display

Selection can be made between three operating modes:

- **AUTO** – optimum comfort mode
 The room will be kept at comfort zone status insofar as the external control signals permit this. All control functions are enabled.

- **ECO** – optimum energy mode
 The room will be kept at pre-comfort status insofar as the external control signals permit this. Reduced heating (~3 K) and elevated cooling setpoints (~3 K) are in effect in this status. Starting from this status, the room can be returned to comfort status within a short time. Sequence control is enabled. The operating mode ECO is intended for rooms not continuously occupied and/or for reduced requirements.

- **MAX** – Boost function
 The room will be heated or cooled at maximum power, insofar as the external control signals permit this. The Boost function is switched off:
 - Timer off
 - Setpoint is reached
 - Selection of a different mode (AUTO or ECO)

Operating level 2 – Configuration

DIP switch for configuration

Basic setpoint setting

- \(W \) (heating setpoint)
- \(H \) (cooling setpoint)
- Potentiometer 15 ... 36°C (Default 21°C)
- Label for settings
- Recording the settings used
- (DIP switch and basic setpoint)

Operating level 3 – Service

Measuring point terminals

Measuring points for all connection terminals (also during operation).

Internal function test

A comprehensive internal function test can be started with the mode switch which makes it possible to check the controller, including nominal voltage (AC 24 V). The three LEDs (status display) are used thereby to display the voltage level and the statuses.

Simulation control sequence

The rotary knob for the setpoint adjustment can be used to simulate the connected actuators, and thus the heating and cooling control sequences, independent of the room temperature.

ZTH-GEN / PC-Tool connection

The diagnostic socket 1 is used for PP communications with the connected Belimo MFT actuator. Physical access to the valve actuator can be dispensed with as a result.
Introduction

The control functions of the CRK24-B1 define the behaviour of the controller output or influence the current setpoint, respectively.
Operation can be automated and comfort and energy savings potential enhanced through the utilisation of corresponding sensor mechanisms at the input side.
The corresponding functions are described in detail in the following.

Function overview CRK24-B1

<table>
<thead>
<tr>
<th>Supply</th>
<th>AC 24 V / 50/60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Room temperature controller in the comfort zone</td>
</tr>
<tr>
<td></td>
<td>Internal temperature sensor (Type NTC, Power supply range 10 … 45°C)</td>
</tr>
<tr>
<td></td>
<td>Setpoint (adjustment range 15 … 36°C)</td>
</tr>
<tr>
<td>Operation</td>
<td>Mode selection switch: AUTO – ECO – MAX</td>
</tr>
<tr>
<td></td>
<td>Mode display LED: AUTO – ECO – MAX</td>
</tr>
<tr>
<td></td>
<td>Setpoint adjustment rotary knob ±3 K</td>
</tr>
<tr>
<td>Inputs</td>
<td>Pre-comfort</td>
</tr>
<tr>
<td></td>
<td>Dew point limitation</td>
</tr>
<tr>
<td></td>
<td>Energy hold off (EHO)</td>
</tr>
<tr>
<td></td>
<td>External temperature sensor (Type NTC 5 kΩ, Power supply range 10 … 45°C)</td>
</tr>
<tr>
<td></td>
<td>External setpoint shift 0 … 10 V</td>
</tr>
<tr>
<td>Output</td>
<td>2 … 10 V System output: Belimo 6-way ball valve</td>
</tr>
<tr>
<td>Functions</td>
<td>Control characteristics: P</td>
</tr>
<tr>
<td></td>
<td>P-Band, switchable</td>
</tr>
<tr>
<td></td>
<td>Output can be switched (modulating / On/Off)</td>
</tr>
<tr>
<td></td>
<td>Room temperature monitoring (frost)</td>
</tr>
<tr>
<td></td>
<td>Internal Function test with nominal voltage check</td>
</tr>
<tr>
<td></td>
<td>Commissioning mode with simulation of output and sequence</td>
</tr>
<tr>
<td></td>
<td>Diagnostics via integrated PC-Tool connection</td>
</tr>
<tr>
<td>Installation</td>
<td>Surface mounting with flush-mounted or surface-mounted connection</td>
</tr>
</tbody>
</table>

Application documentation

Continually expanded, comprehensive documentation with specific applications is available for the CRK24-B1 controller.
Functions

Setpoint calculation

<table>
<thead>
<tr>
<th>Operating status</th>
<th>Heating setpoint</th>
<th>Cooling setpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comfort</td>
<td>Basic setpoint W_H</td>
<td>Comfort-Heating setpoint W_A</td>
</tr>
<tr>
<td></td>
<td>± 3 K setpoint adjustment</td>
<td>$+1$ K dead band</td>
</tr>
<tr>
<td></td>
<td>+ Setpoint shift $0 \ldots 10$ V</td>
<td></td>
</tr>
<tr>
<td>Pre-comfort</td>
<td>Comfort-Heating setpoint W_A</td>
<td>Comfort-Heating setpoint W_A</td>
</tr>
<tr>
<td></td>
<td>-3 K Pre-comfort-Offset heating</td>
<td>$+1$ K dead band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$+3$ K Pre-comfort-Offset cooling</td>
</tr>
<tr>
<td>Energy hold off</td>
<td>fix 15° C (building protection)</td>
<td>fix 40° C (building protection)</td>
</tr>
<tr>
<td>Frost</td>
<td>fix 10° C</td>
<td>without function</td>
</tr>
</tbody>
</table>

Examples

Comfort

- $+1$ K dead band
- 23° Comfort setpoint W_A

Pre-comfort

- $+1$ K dead band
- 23° Comfort setpoint W_A
Functions

Pre-comfort

<table>
<thead>
<tr>
<th>AC 24 V</th>
<th>NTC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-comfort</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Digital input di1

If a local detector (e.g. a motion detector) has an effect on the digital input di1 and closes the corresponding contact, then the room will be regulated to stand-by level, i.e. the heating setpoint is reduced by 3 K or the cooling setpoint is raised by 3 K, respectively.

Typical applications
- One motion detector, light switch or other detector at di1 reduces the energy consumption in unoccupied rooms.
- Superordinate imperative command, e.g. GLT.

Notes
- The frost limit is monitored with the internal sensor during Pre-comfort when an external temperature sensor is used.
- As a result of the automatic sensor recognition feature, the switch-over to Pre-comfort takes approximately 40 seconds.

Legend
- Y Output signal
- WA Current setpoint

Energy Hold Off (EHO)

<table>
<thead>
<tr>
<th>AC 24 V</th>
<th>EHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Digital input di2

If a local detector (e.g. a window switch) has an effect on the digital input di2 and closes the corresponding contact, then the room will be regulated in energy-savings mode to the building protection level, i.e. the heating setpoint is significantly reduced (15 °C) and/or the cooling setpoint is significantly raised (40 °C), so that sensitive furnishings (plants, pictures, etc.) will not be able to suffer any damage.

Typical applications
- One window switch at di2 stops energy consumption as soon as the window is opened until the lower or upper building protection limit has been reached.
- Superordinate imperative command, e.g. GLT.

Notes
- The 6-way valve is moved into neutral position during the Energy Hold Off (ao1 = 6 V).
- The mode switch (operating level 1) is deactivated during the Energy Hold Off (the input di2 has higher priority).

Legend
- Y Output signal
- WA Current setpoint

www.Belimo.com
www.Barcolairusa.com

S4-CRK24-B1 • en • v1.1 • 10.2009 • Subject to Change
CRK24-B1

Functions

Chilled ceiling with dew point limiter

Digital input di2

If the optional connectable dew point limiter responds, then the output ao1 is overridden to 6 V by means of the input di2 (external dew point limiter). The 6-way ball valve moves into neutral position.

Typical applications
Chilled ceiling systems in which one dew point limit is required.

Typical application
Belimo actuator for 6-way valve

External setpoint shift

Analogue input ai2

An external DC 0…10 V signal at the analogue input ai2 can be used to raise the basic setpoint by 0 … 10 K (corresponding to 0 … 10 V).

Typical application
Summer/Winter Compensation

Notes
A negative shift is possible by setting the basic setpoint to the desired final setpoint, e.g. from 21°C (default value) to 16°C. This results in the following correspondences:

- 0 … 5 V: 16 … 21°C and
- 5 … 10 V: 21 … 26°C (see illustration at the left).
CRK24-B1

Functions

External temperature sensor (ai1)

An external NTC temperature sensor can be connected at analogue input ai1. Sensor type: NTC Sk (5 kΩ), e.g. Belimo TFK.

Typical applications
- More flexible placement of the sensor for recording the room temperature
- Temperature measurement in the ventilation channel for recording the average room temperature.

Notes
- The controller recognises it automatically if an external sensor is connected. No additional adjustments are required.
- The simultaneous utilisation of Pre-comfort at di1 is possible, although in this case a switchover to the internal sensor is made (see also «Pre-comfort»). As a result, the current room temperature is monitored for building protection.

Analogue outputs

LR24A-MP Actuator for 6-way ball valve
- System output «ao1» (Terminal 6), diagnostic socket «US1/1» (Terminal 7).

Note
When using an LR24A-MP, it is expedient to direct the communications signal US of the actuator to the controller. Interventions can be implemented on the actuator by means of controller diagnostic socket 1 without the need for direct physical access.
Dimensions [mm]

Mechanical installation

1. Remove the housing cover.
2. Pull out slightly the wall of the housing to release the pcb.
3. Remove the PCB.

Rotary knob for setpoint adjustment
If the rotary knob has been removed proceed as follows:
 a. Insert the rotary knob approximately half way and turn it clockwise as far as the stop.
 b. Remove the knob and align it so that the cam is flush with the left stop (see left).
 c. Insert the knob fully.

Electrical installation

Terminal connection 1 … 8
Flush-mounted connection
Surface-mounted connection
Power supply design / wire sizing

24 V supply

Wire sizing and cabling

The wire sizing and installation of the AC 24 V supply, the fuse protection, and the cables are dependent on the total operated load and local regulations. Account must be taken of the following performance data, including starting currents:
- Wire sizing values for room temperature controllers: 3 VA per CRK24-B1
- Wire sizing values for the valve actuators can be obtained from current data sheets and product information (www.belimo.eu)
- Other devices to be operated with the AC 24 V supply
- Reserve capacity for subsequent expansion (if planned)

Analogue input connection ai1

The analogue input ai1 is used to connect an external NTC 5 kΩ temperature sensor. The sensor value is 5969 Ω at 21°C. A change of 50 Ω corresponds to approximately 0.2 K in this range.
The sensor cable constitutes a series resistance that must be added to the actual sensor value.
Assuming a cable length of 15 m (2 x 15 = 30 m), the resistance of one 0.75 mm² Cu cable is approximately 0.7 Ω, in other words negligible.
To prevent interference, however, the sensor cable should be a maximum of 20 m long.

Commissioning / Power on behaviour

Commissioning
1. Assemble the baseplate of the housing and connect the cables (see page 15)
2. Configure the DIP switches on the printed circuit board according to the required application.
3. Assemble the printed circuit board on the baseplate of the housing and then mount the housing cover (see page 15)
4. Switch on the nominal voltage AC 24 V
5. Optional: start the test and simulation mode (see below)

When the voltage is applied, the system starts operating normally in AUTO mode unless the test simulation mode is selected. The active operating status is determined primarily by the configuration of the DIP switches and the status of the inputs.

Power on behaviour
After power on of the voltage supply the output gets initialised as follows:
- ao1 = 0 V
Subsequently the controller switches automatically to the control mode.

Test and simulation mode

All controllers are supplied with two auxiliary programs for commissioning and servicing:
- Internal function test
- Control sequence simulation

Activating test and simulation mode

The test and simulation mode of CRK24-B1 controllers can be activated easily with the mode switch on the operator panel.

To activate test mode
1. Set the mode switch to MAX
 - The red LED (MAX status indication) lights up
2. Keep the mode switch pressed for ten seconds
 - The internal function test is activated (see below)

To activate simulation mode
3. Press the mode switch again briefly for approx. one second
 - The green LED (COMF status indication) flashes
 - Control sequence simulation is activated (see below)

Deactivating test and simulation mode

The test and simulation mode can be deactivated either by pressing the mode switch again for ten seconds or by interrupting the power supply. It is also deactivated automatically 15 minutes after the last user action (auto-reset).
Internal function test

The internal function test tests the nominal voltage that is connected to the controller (AC 24 V), in other words the complete electrical wiring system from the control cabinet to the controller. The three LEDs (status indication) indicate the voltage level (see below) and states during the test.

Nominal voltage (AC 24 V)

<table>
<thead>
<tr>
<th>LED (status indication)</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX red</td>
<td>flash</td>
<td>flash</td>
<td>permanently on</td>
</tr>
<tr>
<td>ECO orange</td>
<td>flash</td>
<td>flash</td>
<td>permanently on</td>
</tr>
<tr>
<td>AUTO green</td>
<td>permanently off</td>
<td>flash</td>
<td>permanently on</td>
</tr>
</tbody>
</table>

Note
Case B and C do not need further attention. In case A (<20 V) attention must be paid to the following points:
- Quality of the wiring and connections
- Cable length and diameter and the transformer sizing

Control sequence simulation

CRK24-B1 In the simulation mode, the connected actuator can be operated regardless of the room temperature. This permits the function of the system to be checked.

Notes
- The external control signals (di1 and di2) are suppressed during the simulation.
- The potentiometer may be adjusted only slowly, due to the system-dependent attenuation of the setpoint potentiometer in simulation mode.
- Simulation mode is automatically deactivated 15 minutes after the last user action (auto-reset).